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Abstract
We study the kinetics of nonlinear irreversible fragmentation. Here,
fragmentation is induced by interactions/collisions between pairs of particles
and modelled by general classes of interaction kernels, for several types of
breakage models. We construct initial value and scaling solutions of the
fragmentation equations, and apply the ‘non-vanishing mass flux’ criterion
for the occurrence of shattering transitions. These properties enable us to
determine the phase diagram for the occurrence of shattering states and of
scaling states in the phase space of model parameters.

PACS numbers: 05.20.Dd, 64.60.Ht, 61.41.+e, 82.70.−y

Fragmentation is a phenomenon of the breaking up of particles into a range of smaller
sized particles. It is naturally found in a wide variety of physical systems, ranging from
comminution, breakup of grains, bubbles, droplets, polymer degradation, disintegration of
atomic nuclei, etc. Fragmentation may occur through external forces, spontaneously, or
through interactions/collisions between particles. The subject has been widely studied
[1–10].

We are mainly interested in collision-induced nonlinear fragmentation as caused by binary
interactions. Such systems can be described by the time evolution of c(x, t), which is the
number of particles of mass or size x at a given time t, or alternatively by its moments
Mn(t) = ∫ ∞

0 dx xnc(x, t). Quantities with similar properties appear in coagulation processes.
In either case the total mass is conserved, M(t) = M1(t) = 1, while the total number of
particles, N(t) = M0(t) = ∫

dx c(x, t), is not. In irreversible coagulation, the mean particle
mass, s(t) = M/N(t), increases monotonically, and may lead to a finite time singularity at
t = tc, the gelation transition, characterized by the appearance of an infinite cluster containing
a finite fraction of the total mass, �(t) = 1 − M(t) (order parameter), where �(t) �= 0
for t > tc. Alternatively, the gelation transition is characterized by a non-vanishing mass
flux �̇(t) = −Ṁ(t) from finite size particles (sol) to the infinite cluster (gel) [11–13], i.e. a
violation of mass conservation.
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In irreversible fragmentation, the reversed scenario occurs. Here s(t) is monotonically
decreasing, while the overall mass is conserved. In these systems a finite time singularity
may occur at tc, the shattering transition. It is characterized by a non-vanishing mass flux,
�̇(t), i.e. the rate at which massive particles are converted into massless infinitesimals or
fractal dust [1–3, 7]. If �̇(tc) is finite this transition has the character of a continuous phase
transition, described by the order parameter �(t) = 1 − M(t), as in gelation [13]. In the case
�̇(tc) = ∞, all mass instantly ‘evaporates’ from the system; the transition is called explosive
and also referred to as a first-order transition [8].

Smoluchowski’s coagulation–fragmentation equation [11] gives the basic mean field
description for reversible and irreversible coagulation [2, 3, 13] and fragmentation processes
[1–10] in terms of the time evolution of c(x, t) in spatially uniform (well-stirred) systems. In
irreversible fragmentation or coagulation, the system is described by a nonlinear coagulation
rate in combination with a spontaneous linear fragmentation rate and/or a collision- or reaction-
induced nonlinear fragmentation rate. The system does not reach a steady state, but at
asymptotically large times the distribution function c(x, t) approaches under rather general
conditions to the standard scaling form, which describes the typical x-dependence around the
mean particle size s(t), which is steadily decreasing.

The occurrence of shattering has been addressed only partially in the case of collision-
induced nonlinear fragmentation. It shows a behaviour, qualitatively different from
spontaneous (linear) fragmentation. Furthermore, the special cases analysed so far are not
necessarily generic, but appear to be borderline cases. In this communication, we study the
occurrence of shattering for general classes of fragmentation models within the framework
of the nonlinear fragmentation equation and we analyse its peculiarities and point out the
parallels with gelation.

Collision-induced irreversible fragmentation can be described at the mean field level by
the nonlinear fragmentation equation with a collision term I composed of a loss and a gain
term [4],

∂c(x, t)/∂t = I (x|c) ≡ −c(x)

∫ ∞

0
dy K(x, y)c(y)

+
∫ ∞

x

dy

∫ ∞

0
dz b(x|y)K(y, z)c(y)c(z). (1)

Here b(x|y) is a conditional probability, describing the distribution of outgoing fragments of
mass x, given that a particle of mass y breaks [1–4]. One distinguishes: (i) deterministic
or splitting models [4, 8], where a particle breaks into two equal fragments, hence
b(x|y) = 2δ(x − y/2), and (ii) stochastic models, where a fragment of random mass x
breaks off from a particle of mass y. As mass is conserved in a single breakup event, the
outgoing fragment distribution has to obey the homogeneity requirement, b(x|y) = y−1b

(
x
y

)
.

For simplicity, we take the standard form b(s) = (β + 2)sβ ,3 obeying∫ y

0
dx xb(x|y) = y, N̄ =

∫ y

0
dx b(x|y) = β + 2

β + 1
. (2)

For physical reasons the mean number of outgoing fragments satisfies N̄ � 2 which implies
−1 < β � 0. Binary breakup corresponds to β = 0. In equation (1) we consider binary
interactions, where the kernel K(x, y) describes the interaction rate of pairs of particles
(x, y). It may further contain a factor p̄(x, y), which gives the probability that breakage
indeed occurs and may depend on the masses (x, y). If p̄ is constant, it can be absorbed in the

3 Choices for b(x|y) have been discussed by Peterson [9] and Cheng and Redner [4] and choices for a(x) by McGrady
and Ziff in [2].
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time scale. Of importance in our analysis is also the rate equation for the cumulative mass,
Ṁ(x, t) ≡ ∫ ∞

x
dy yċ(y, t), as can be derived from equation (1). It reads

Ṁ(x, t) = −
∫ ∞

x

dy

∫ ∞

0
dz yB

(
x

y

)
K(y, z)c(y)c(z) (3)

with B(s) = ∫ s

0 du ub(u) = sβ+2. In applications of the nonlinear Smoluchowski equation,
a variety of collision kernels K has been proposed for processes induced by interacting
particles [11, 13]. Because of mathematical simplicity, kernels of the sum-product form
K(x, y) = 1, xp + yp, (xy)p, xpyq + xqyp, etc have been extensively studied in coagulation
processes. Physically motivated kernels are e.g. K = (x−α +y−α)(xβ +yβ) with α = β = 1/d

for interaction rates among diffusing particles, or K ∼ (Rx + Ry)
d−1 for ballistic collision

rates in a d-dimensional system. Here Rx ∼ x1/d is the radius of a particle of mass x and
K is a geometrical cross-section. In most cases of physical interest, especially at limiting
particle masses (x � s(t) or x � s(t)), the kernels are continuous and homogeneous, i.e.
K(ax, ay) = aλK(x, y) = aλK(x, y) and b(ax|ay) = aλ′

b(x|y) with λ′ = −1. Kernels for
coagulation can be classified by two exponents [13], i.e. K(x, y) ∼ xpyq if x � y, where
p � q and λ = p + q, with p > 0 (class I), p = 0 (class II) and p < 0 (class III), with the
physical restrictions λ � 2, q � 1 [13]. This (p, q) classification appears to be relevant for
nonlinear fragmentation as well, as we will show.

The breakage probability, p̄(x, y), defines three different types of models depending on
whether particle x or y breaks: (i) symmetric breakage, where a randomly chosen particle of
the interacting pair (x, y) breaks [4, 8] and where p̄(x, y) = 1; (ii) L-breakage, where the
larger particle breaks, hence p̄(x, y) = θ(x − y); (iii) S-breakage, where the smaller particle
breaks and p̄(x, y) = θ(y − x); θ(x) stands for the unit step function. The corresponding
nonlinear fragmentation equation for L-breakage is obtained from equation (1) by replacing
I (x|c) with IL(x|c), with K(x, y) replaced by KL(x, y) = K(x, y)θ(x − y) and similarly for
S-breakage. Subsequently, we will discuss the nonlinear stochastic fragmentation equation
for kernels of classes I, II and III for symmetric, L- and S-breakage models. Regarding exact
solutions of the nonlinear fragmentation equation very little is known, and mostly restricted to
mono-disperse initial conditions. The essential references are [4, 8], where the former contains
a representative list of the older literature. Cheng and Redner [4] analyse the deterministic L-
and S-breakage models, KL(x, y) = xpθ(x − y) and KL(x, y) = xpθ(y − x), and Krapivsky
and Ben-Naim [8] does so for both the deterministic and the stochastic breakage models with
KL(x, y) = θ(x − y) and KL(x, y) = θ(y − x).

Regarding the structure of the nonlinear integral-differential equations (1) and (3) for
cases where K(x, y) = a(x)a(y) is a general product kernel, it has been observed [4] that
the nonlinear fragmentation equation can be transformed into a linear one with a new time
variable τ(t) that is related to the physical time t in a nonlinear manner. The functional
form of τ(t) determines whether a shattering transition is present or absent. So, to explain
this dependence it is paramount to discuss how the initial solutions c(x, t) of the nonlinear
fragmentation equation for a given c(x, 0) can be constructed from the initial solutions c̄(x, τ )

of the linear fragmentation equation. To this end, we analyse the linear fragmentation

∂c(x, t)/∂t = −a(x)c(x) +
∫ ∞

x

dy b(x|y)a(y)c(y), (4)

where a(x)c(x) represents the spontaneous or externally induced linear breakup rate. Exact
solutions c(x, t) are known for algebraic fragmentation rates, a(x) = xα for all real α, and
mono-disperse initial conditions, c(x, 0) = δ(x − x0) [1–3, 5]. These c(x, t)’s are the causal
Green functions of equation (4) with a monomer source δ(t)δ(x − x0) [5]. So, c(x, t) = 0 for
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all x > x0 at t > 0. In the following, we set x0 = 1. Spontaneously fragmenting systems4

with α � 0 are non-shattering, i.e. the total mass M(t) = 1 at all times, and the total number of
particles, M0(t) < ∞ for all t < ∞. Moreover, moments with n + β + 1 > 0 exist, and evolve
for large t as Mn(t) ∼ t (1−n)/α , while those with n + β + 1 � 0 are divergent. On the other
hand, spontaneously fragmenting systems with α < 0 are shattering, and mass loss starts at
the initial time. So, shattering occurs at t = tc = 0, where �̇(tc) is finite; hence the transition
is continuous. The possibility of an explosive shattering transition with �̇(tc) = ∞ is never
realized. All initial solutions, which have by definition t > 0, are non-mass conserving
post-shattering solutions with t > tc = 0. They behave for small x as c(x, t) ∼ A(t)x−θ with
θ = α + 2. Consequently, moments Mn(t) with n � 1 + α are divergent for all times and
those with n > 1 + α decay for long times as Mn(t) ∝ A(t) ∝ e−t t (β+2)/α , including M(t).
We also point out that for α > 0 the exact solutions converge asymptotically to a standard
scaling form, c(x, t) = (1/s2(t))ϕ(x/s(t)) [1–9], where the scaling limit is formally defined
as the coupled limit, t → ∞ and x → 0 with x/s(t) kept constant. In this limit, where
s ∼ 1/M0 ∼ t−1/α → 0 (i.e. the total number of particles M0(t) diverges), the exact solution
becomes s2c(su, t) ∼ ϕ(u) ∼ uβ exp[−uα]. Those with α < 0 do not approach a scaling
form. Inspection of the exact solution as α → 0 at fixed (x, t) shows that c(x, t) = 0 for all
x > x0 = 1 and reads for x < 1 (see [2]),

c(x, t) = e−t (2t/ln(1/x))1/2I1[2(2t ln(1/x))1/2], (5)

where s(t) = e−t and I1(x) is the modified Bessel function of integer order n = 1. This
expression shows that the borderline case, α = 0, is exceptional, i.e. non-scaling and non-
shattering.

Let us now consider the nonlinear fragmentation equation for symmetric breakage
with product kernel K(x, y) = a(x)a(y) = (xy)p and 0 � λ = 2p � 2. In this
case, equation (1) is a quasi-linear equation for which exact initial value solutions can be
obtained. It can be mapped onto the linear fragmentation equation with α → p and t → τ ,
defined through dτ = Mp(t) dt . Consequently the mass distribution, c̄(x, τ ), and moments,

M̄n(τ ) = ∫ 1
0 dx xnc̄(x, τ ), for mono-disperse initial values are known explicitly, and only

τ(t) needs to be determined in order to have the complete solution as a function of t. For
p = α > 0, where K is a class I kernel, total mass is conserved for all τ , and the moments
for n �= 1 behave at large τ as M̄n(τ ) ∼ τ (1−n)/p. Furthermore, to have τ as a function of
t we need to invert the relation t = ∫ τ

0 ds/M̄p(s). If λ = 2p > 1, then t (τ ) ∼ τ 2−1/p is
monotonically increasing, the relation is invertible and t → ∞ as τ → ∞. Hence, M1(t) = 1
for all t, and there is no shattering and no divergence of M0(t) at any finite time. However, if
λ = 2p < 1, then as τ → ∞, t → tc ≡ ∫ ∞

0 dτ/Mp(τ) < ∞. Consequently there exists a
finite time singularity, τ ∼ (tc − t)−p/(1−2p) as t → tc and mass remains conserved only for
t < tc and vanishes instantaneously at tc, where �̇(tc) = −∞. At the same time all moments,
behaving as Mn(t) ∼ (tc−t)(1−n)/(1−2p), either diverge or vanish. These are the hallmarks of an
explosive shattering transition at tc, where all massive particles are converted instantaneously
into fractal dust. For λ = 2p < 0 (class III), the kernel K = (xy)p can be mapped on the
linear equation through dτ = M−|p|(t) dt . Its moments M̄n(τ ) with n < 1 + α = 1 − |p| do
not exist. Consequently τ(t) is not defined, and c(x, t) does not exist for mono-disperse initial
conditions with class III kernels. The same applies to scaling solutions. The corresponding
class II kernel with p = α = 0 or K = 1 represents an exceptional point, as discussed below
equation (5). The solution at p = 0 (K = 1, class II) exists, is shattering and c̄(x, τ ) is
identical to the non-generic, non-scaling solution of the linear equation (4) at α = 0.

4 The analytic results in this paragraph have been calculated with the help of [7].
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To determine possible scaling solutions, we substitute the scaling ansatz c(x, t) =
(1/s2)ϕ(u = x/s) in (3) and take the derivative, yielding the scaling equation for symmetric,
L- and S-breakage (A = 0, L, S),

(
ϕ(u)/uβ

) ′ = −(ϕ(u)/γ uβ+1)

∫ ∞

0
dv KA(u, v)ϕ(v), (6)

where γ is an arbitrary positive separation constant, ϕ(u) has to satisfy the boundary condition,
u2ϕ(u) = 0 as u → ∞, and K0 = K . For all three types of breakage models the evolution
equation for the mean particle size is the same, ṡs−λ = −γ . Its solution is

s(t) ∼



(t0 + t)1/(1−λ) for λ > 1, t → ∞
exp[−γ t] for λ = 1, t → ∞
(tc − t)1/(1−λ) for λ < 1, t � tc,

(7)

where t0, tc → ∞ as λ → 0. The appearance of the finite time singularity at tc indicates that
shattering only occurs for λ < 1. Systems with λ � 1 are non-shattering [4]. Note that the
scaling limit in the pre-shattering critical region is defined as the coupled limit: t ↑ tc and
x → 0 with x/s(t) = constant.

For sum-product kernels in symmetric breakage the rhs in equation (6) reduces to sums
of powers us , multiplied by coefficients mn = ∫ ∞

0 du unϕ(u), which can be determined self-
consistently. Specifically, for K(x, y) = (xy)p (p > 0, class I), one obtains from the rhs of
(6) ψ ′(u) = ψ(u)mpup−1/γ , where ψ(u) ≡ ϕ(u)/uβ . This can be readily integrated to yield

ϕ(u) = Cuβ exp[−upmp/γp], (8)

where C and γ are determined by imposing normalization (m0 = 1) and mass conservation
(m1 = 1). In order to get simpler analytic expressions, we use the invariance property that
the scaled distribution, ϕ̄(ū), obtained under the similarity transformation ϕ̄(ū) = s−2

0 ϕ(u/s0)

for an arbitrary constant s0 also satisfies equation (6) with m̄1 = 1. This property allows
us to fix γ by setting mp/γp = 1, which is a self-consistency equation. With this choice
the moments read mn = (C/p)�(bn) = �(bn)/�(b1), where �(x) is the gamma function,
and bn = (1 + β + n)/p. Hence, the scaling distribution function can be expressed as
ϕ(u) = puβ e−up

/�((β + 2)/p). Solutions with a different normalization, e.g. m0 = 1, are
easily derived using the invariance property under similarity transformations.

Similarly one derives that the size distribution for sum kernels, K = xp +yp (class II) with
p > 0, has the form ϕ(u) = Cuβ̄ e−up = pu(β−1)/2) e−up

/�((β +3)/2p) with β̄ = β −mp/γ .
Here we impose the self-consistent equation m0/pγ = 1 to determine the separation constant
γ . Imposing mass conservation leads to the second equality in the previous equation. The
moments of the distribution can then be computed; in particular mp = b0γp where now
bn = (1 + β̄ + n)/p which implies β̄ = 1

2 (β − 1). The exact scaling solutions for the
symmetric breakage kernels (p, p) and (0, p) above have different limiting forms as p → 0.
So, the analysis starting below equation (5) shows that the K kernel with (p, q) = (0, 0)

is quite singular. In a similar manner the scaling solutions ϕ(u) for the geometric collision
cross-section, K ∼ (x1/3 + y1/3)2, and closely related kernels can also be found, as well
as the asymptotics of ϕ(u) for general class I and II kernels in all breakage models of type
A = (0, L, S). In L- and S-breakage models for generic K no exact initial value or scaling
solutions are known, except for the non-generic borderline case K = 1 in [8], which lacks
standard scaling in the variable u = x/s(t) in all three breakage models.

To analyse from a broader perspective the occurrence of shattering, we will focus on the
behaviour of the cumulative mass flux for vanishingly small masses. If limx→0 Ṁ(x, t) ≡ Ṁ(t)

is vanishing at tc, the system is non-shattering; otherwise there is shattering. If −∞ <
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Ṁ(tc) < 0, the phase transition is continuous, and c(x, t) exists for t > tc. If Ṁ(tc) = −∞,
the phase transition is explosive (first order), and c(x, t) does not exist for t > tc.

For general K(x, y) in classes I, II and III, the mass flux Ṁ(x, t) can only have a non-
vanishing limit for x → 0 if c(x, t) is of the power-law type because the rhs contains the factor
xβ+2 with −1 < β � 0. So we propose the post-shattering ansatz c(x, t) ∼ A(t)x−θ (x → 0)

and determine θ such that Ṁ(t) �= 0 (see [12, 13]). Moreover, θ < 2 because the total mass
should remain finite.

The evolution equation for fragmentation with S-breakage is described by equation (3)
with K replaced by KS . Inserting the ansatz above yields for small x,

Ṁ(x, t) � −A2k(θ)(x3+λ−2θ )/(2θ + β − 1 − λ)

k(θ) =
∫ ∞

1
dsK(1, s)s−θ (1 + p < θ < 2),

(9)

where K(1, s) ∼ sp for s � 1. In the case θ = 1
2 (3 + λ) the above small-x limit yields a finite

result for the mass flux Ṁ(t) = −A2(t)k(θ)/(2+β), i.e. it allows the existence of a continuous
shattering transition with a post-shattering solution of the algebraic form for t > tc; θ < 2
implies λ < 1. At the (unknown) shattering time tc mass conservation breaks down, and for
t > tc there exists a non-vanishing order parameter �(t) = 1 −M(t) > 0 with �̇(t) ∼ A2(t).
Equation (9) also includes the special result, obtained in [8] for the S-breakage model with
K = 1 and β = 0.

It is remarkable that the post-gelation distribution, c(x, t) ∼ A(t)x−θ , occurring in
Smoluchowski’s coagulation equation for λ > 1, has the same exponent θ = (3 + λ)/2
[12, 13] as in the fragmentation process above, hence the close analogy between gelation and
continuous shattering. Note that the value of exponent β has no influence on the existence of
shattering.

A similar analysis can be performed for symmetric and L-breakage models. In doing so,
we introduce a lower cut-off εy on the z-integral in equation (3) and take limε→0 at the end of
the calculations. Due to the physical restrictions on the allowed values for p and q, shattering
is always explosive rather than continuous.

From the properties discussed in this communication, we can construct the phase diagram
for symmetric breakage in the (p, q)-plane. It is restricted to the triangular region, spanned
by (0, 0), (0, 1), (1, 0) and includes the boundaries. The region with 0 � λ < 1 represents
shattering systems, and the region with 1 � λ � 2 represents non-shattering ones. The whole
triangular region shows standard scaling in the variable u = x/s(t), except in the singular
corner (0, 0). Regarding the phase diagram for L- or S-breakage the location of the left
boundary (separatrix between ‘non-existence’ and ‘existence of scaling solutions’), including
the singular point (0, 0), is unknown, and the behaviour on it may be different from its right
and left limits. From [8] it is known that a new type of scaling in the variable x/m∗(t) appears
at (0, 0). Here m∗ is a characteristic mass that cannot be defined a priori, but follows from a
clever mapping of the fragmentation equation on the nonlinear equation for travelling fronts.
In contrast to models with symmetric breakage, which are quasi-linear, the scaling equations
for L- and S-breakage are genuinely nonlinear, i.e. ϕ′′(u) = F(u, ϕ′, ϕ), and the only solutions
known are those for the singular point (0, 0).

We have discussed the generic behaviour of collision-induced irreversible fragmenting
systems at the mean-field level. We have shown that the scenarios for nonlinear fragmentation
are qualitatively different from those of the spontaneous linear fragmentation. The behaviour
of the shattering transition depends both on the kind of fragmentation kernel and on the type
of breakage. For symmetric and L-breakage, where the kernel K has a degree of homogeneity
λ < 1, shattering is always explosive, while S-breakage models show a continuous shattering
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transition, analogous to gelation. The existence of a transition does not depend on the details
of the fragment distribution, b(x|y), i.e. on β. Shattering in collision-induced fragmentation
always takes place at a finite time tc �= 0, as opposed to linear fragmentation where shattering
occurs at tc = 0 for α < 0. In contrast to gelation [13], in class III kernels with symmetric
breakage, neither initial nor scaling solutions exist. The solutions for fragmentation models
with a fragment distribution, b(s) = 0 for s < s0, b(s) �= 0 for s0 < s < 1, have scaling
solutions ϕ(u) exhibiting log-normal distributions at small u [4].
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